SSD-TS: Exploring the Potential of Linear State Space Models for
Diffusion Models in Time Series Imputation

Hongfan Gao
East China Normal University’
Shanghai, China

hf.gao@stu.ecnu.edu.cn

Ronghui Xu
East China Normal University'
Shanghai, China
rhxu@stu.ecnu.edu.cn

Abstract

Probabilistic time series imputation has been widely applied in real-
world scenarios due to its ability for uncertainty estimation and
denoising diffusion probabilistic models (DDPMs) have achieved
great success in probabilistic time series imputation tasks with its
power to model complex distributions. However, current DDPM-
based probabilistic time series imputation methodologies are con-
fronted with two types of challenges: 1) The backbone modules of the
denoising parts are not capable of achieving sequence modeling with
low time complexity. 2) The architecture of denoising modules can not
handle the dependencies in the time series data effectively. To address
the first challenge, we explore the potential of state space model,
namely Mamba, as the backbone denoising module for DDPMs. To
tackle the second challenge, we carefully devise several SSM-based
blocks for time series data modeling. Experimental results demon-
strate that our approach can achieve state-of-the-art time series
imputation results on multiple real-world datasets. Our datasets and
code are available at https://github.com/decisionintelligence/SSD-
TS/
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1 Introduction

The analysis of time series can model the intrinsic patterns within
time-series data, thus providing robust support for decision-making
in various fields, such as meteorology [29, 44, 46], financial anal-
ysis [2, 38, 56, 80], healthcare [48, 55, 59], power systems [74, 79,
90, 92, 93] and traffic [23, 40, 73, 81, 82]. To enhance the reliability
of analytical outcomes, it is critical to ensure the integrity of time
series. However, due to various reasons such as device failures,
human errors, and privacy protection, time series data can easily
be incomplete with missing observations at different timestamps.

Time series imputation methods aim to estimate the values of
missing points based on the observed points in incomplete time
series, thereby restoring the integrity of the time series while pre-
serving its original statistical properties. According to the ability to
provide uncertainty of estimations, time series imputation methods
can be categorized into the following two perspectives: 1) Determin-
istic [3, 8, 15], and 2) Probabilistic [6, 30, 41] imputation methods.
Probabilistic time series imputation is particularly important in
dealing with complex and uncertain data environments, as it pro-
vides a quantification of uncertainty for the imputations. The key
to probabilistic imputation lies in modeling the posterior distribu-
tion. Existing probabilistic time series imputation methods include
Gaussian Process and Variational Autoencoder-based methods [17],
Normalization Flow-based methods [64], and Diffusion-based meth-
ods [72]. Among these, the Diffusion-based method has emerged as
the optimal choice for probabilistic time series due to their accuracy
in posterior modeling and adaptability to different scenarios and
various types of time series data.

When selecting a denoising backbone in the diffusion model,
the following two key factors need to be considered: 1) Model
compatibility, and 2) Time complexity. Model compatibility
involves two key aspects: 1) the backbone of the model should be
capable of handling input data effectively. 2) the backbone of the
model should align with the model’s intended objective (i.e., in
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Table 1: Comparison of our method and existing methods in
modeling dependencies and time complexity.

Backbone Model CNN Transformer SSM SSD-TS (Ours)
Global Dependency Local Global Partial Global
Time Complexity O(L) O(L?) O(L) O(L)
Channel Dependecny Independent  Independent Independent Dependent
Inter-sequence Dependency | Unidirectional Unidirectional ~Unidirectional — Bidirectional

diffusion models, the backbone must be capable of modeling noise
in the diffusion process). Specifically, the missing observations in
time series have correlations with their neighbors on both sides,
so it is crucial to design a model by considering information from
neighbors of both sides. Moreover, it is also essential to accurately
capture the properties of time series, such as global dependencies
and channel correlations. Three mainstream denoising backbones
are widely used in diffusion models for time series imputation:
1) Convolutional Neural Networks (CNNs)-based, 2) Transformer-
based and 3) State-Space Model (SSM)-based backbones. Given a
time series with a length of L, the CNNs-based backbone can capture
partial information from the neighbors within the receptive fields
and has O(L) time complexity. The transformer-based backbone can
model temporal dependencies across the entire time series but is
with quadratic time complexity O(L?). The SSM backbone has a
linear time complexity, O(L), but it falls short in capturing the
information from one side of the neighbor. Moreover, all these
backbones fail to capture the channel dependencies in time series.
The comparison results of existing backbones and our method in
terms of various dependencies and time complexity are presented
in Table.1.

Recently, Mamba [12], a linear sequence modeling approach
based on state-space models has demonstrated superior perfor-
mance in various time series tasks, including time series forecasting,
imputation and time series foundation models [42, 76]. Compared
to Transformer-based models, Mamba-based models have shown
stronger sequence modeling capabilities and better performance
in time series tasks. However, there has not been research inves-
tigating the Mamba model with diffusion models for time series
applications. Whether the Mamba model can serve as the backbone
of a diffusion model and achieve competitive performance remains
an open question.

In this paper, we investigate how to apply Mamba as backbones
for time series diffusion models. As shown in Table.1, existing
backbones exhibit issues in sequence dependency modeling, time
complexity, and inter-channel dependency modeling. To address
time complexity, we adopt Mamba of linear complexity, as the
foundation for our base module. To tackle intra-sequence and bidi-
rectional dependency modeling, we propose the Bidirectional At-
tention Mamba (BAM) block, a bidirectional module with temporal
attention based on the linear state-space model Mamba, achieving
effective and efficient intra-channel dependency modeling. Further-
more, for inter-channel dependencies, we analyze the inductive bi-
ases inherent in inter-channel relationships and compare how these
biases are captured by the Mamba-based channel modeling module
versus CNN- and transformer-based approaches. Our findings indi-
cate that the Mamba-based module provides a more accurate and
comprehensive representation, making it a superior choice. Based
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on this analysis, we design the Channel Mamba Block (CMB) to
effectively model inter-channel dependencies.
Our contributions are summarized as follows:

(1) We propose SSD-TS, a State Space Diffusion model for Time
Series imputation. It integrates mamba-based blocks as dif-
fusion backbones and equips the model with the capability
of probabilistic time series imputation with linear time and
space complexity.

(2) We give a brief analysis of the characteristics and inductive
biases of both intra-channel and inter-channel dependencies,
thereby empirically elucidating the superiority of employ-
ing mamba modules as a backbone for diffusion models.
Based on these analyses, we propose bidirectional attention
mamba (BAM) block and channel mamba block (CMB) to
achieve effective modeling of these dependencies.

(3) We conduct experiments on multiple real-world datasets for
time series imputation task. Our approach achieves state-of-
the-art performance across several datasets, different missing
scenarios and missing ratios, which demonstrate the effec-
tiveness of our proposed method.

The rest of our paper is organized as follows: In Section 2, we present
preliminaries of state space models and diffusion models as well as
the problem formulation. In Section 3, we give a brief introduction
about the diffusion models and the architecture details about our
model. In Section 4, we present and analyze the experiment results.
In Section 5, we summarize the related work and in Section 6, we
conclude our paper.

2 Preliminaries

2.1 State Space Models

State Space Models (SSMs) are an emerging approach to model
sequential data, which is implemented by finding out state rep-
resentations to model the relationship between input and output
sequences. An SSM receives a one-dimensional sequence X € RE
as the input and outputs a corresponding sequence Y € RM. Under
continuous settings, the SSMs are defined according to Eq.1:

h(t) = Ah(t) + Bx(t) W
y(t) = Ch(t)+ Dx(t),

where x(t) € RE, y(t) € RM, h(t), and A(t) € RN stands for
the input, output, hidden state, and derivative of hidden state at
timestamp ¢, respectively; A € RN*N, B e RN*L ¢ € RMXN and
D € RMXL are learnable model parameters.

In real-world applications, the input sequences are discrete sam-
plings of continuous sequences. According to [22], under discrete
settings, by applying the zero-order hold technique to Eq.1, it can
be reformulated as follows.

{hk = Ahk—l + Bxk ’ (2)
Yk = Chy
where A = exp(AA), B = (AA) ! (exp(AA) — I) - (AB) and A is
the learnable step size in discrete sampling. We can see from Eq.2
that the hidden state is updated according to the input x(¢) and last
hidden state h(t — 1) while the output is generated by the hidden
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state h(t) and the input x(¢) and in [21], where it introduces High-
order Polynomial Projection Operator (Hippo) to achieve longer
sequence modeling.

However, it is worth noticing that A, B, C, D in Eq.1 and Eq.2 are
time-invariant parameters, i.e., they are data-independent parame-
ters and do not change over time. Therefore the model is not capable
of assigning different weights at different positions in the input
sequence while receiving new inputs. To address this issue, [20]
proposed Mamba, in which the parameter matrices A, B, C, D are
input-dependent, thus enhancing the performance of sequence
modeling. To tackle the problem of non-parallelization, [20] also
introduced selective scan mechanism for effective computing. For
further performance and efficiency improvements, [12] point out
that SSMs can be categorized as a variant of linear attention model.
In this work, we follow the same architecture of parallel Mamba
Blocks as [12] and a RMS-norm [88] module is added after the par-
allel Mamba block. The details of the post-normalization Mamba
Block (PNM Block) are illustrated in Fig.3a.

2.2 Diffusion Models

Let x; be a sequence of variables for t = 1,2, -- -, T. The diffusion
process consists of two processes: 1) The forward process without
learnable parameters, which transforms the data distribution into
a standard Gaussian distribution by gradually adding noise to the
data. 2) The reverse process with learnable parameters, which
first samples from the standard Gaussian distribution and then
progressively denoises the data to approximate the data distribution.
The reverse process of diffusion models a parameterized distribution
py defined with the following Markov chain to approximate the
real data distribution:

T
po(xor) = pCxr) [ | potxi-ilxo), 3)
t=1
where x7 ~ N(0,I) denotes the latent variable sampled from stan-
dard Gaussian distribution and

Pe(xt—l |xt) = N(xt—1§l10(xt, t)$ 0'9(3([, t)I)$ (4)

The loss function of DDPM aims at minimizing the difference be-
tween the noise € in the forward process and the parameterized
noise €g in the reverse process:

Ly =Exyelle —eg(xr, )l ®)

where t stands for the diffusion time embedding and x; is calculated
in the forward process.

2.3 Problem Formulation

Definition 2.1 (Time Series). A time series can be defined as a
tuple, denoted as X = (X, M, T), where X € RK*L js the observa-
tion matrix with K observations at a time, which are ordered along
L time intervals chronologically; M € RK*L
that indicates whether the observation at (i, j) in X is missing or
not: if the observation at position (i, j) is missing, i.e., Xj ; = NA,
then M; j = 1, otherwise, M; j = 0; T € RL is the time stamps of the
time series.

is an indicator matrix

Problem Statement (Probabilistic Time Series Imputation).
Given an incomplete time series X = (X, M, T), the problem of
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Figure 1: The self-supervised framework and training pro-
cess of SSD-TS. First, some of observed values are masked
following the same missing pattern as the missing values (in
red) to get masked targets (X, in magenta) and the condition
input (X§, in blue). The noisy input is obtain from X, and € (in
orange) sampled from N (0, I). The objective of the network is
to minimize the difference between the parameterized noise
€g(X;, t) and €. Solid lines in each time series represent ob-
served values, while dashed lines represent missing values.

probabilistic time series imputation aims to approximate the real
poster distribution p(X|X). Deep learning based probabilistic time
series imputation methods learn an imputation function My, such
that

X = Mg(X), (6)

where X € RKXL js the imputed time series, Xij = pij £ 0ij
denotes the probabilistic output if M; j = 1, otherwise X; j = X ;.

3 Methodology
3.1 Overall Model Architecture

Fig.1 illustrates the overall self-supervised framework and training
process of our model. We first mask part of the observed values
according to the pattern of missing values, where the masked values
serve as the imputation target Xy during training. The remaining
observed values form the conditional input X§ for the noise predic-
tion network e€g. We then combine Xy with noise € sampled from
a standard normal distribution to obtain the noisy input X;. Both
X§, X;, and the diffusion step t are fed into the noise prediction
network €y to get the parameterized noise.

Fig.2 presents the denoising architecture of our module. The
forward process of €y are as follows: For each diffusion step, the
input consists of the following parts: noisy input X;, the condition
input X§ and the diffusion step t. To begin with, the inputs are
embedded to the latent diffusion space. The embedding module
of noisy inputs and condition inputs share a similar model struc-
ture, which consists of a linear projection module followed by an
SMM block in Fig.3b. The SMM block is composed of stacks of
Bidirectional Attention Mamba (BAM) blocks and Channel Mamba
Blocks (CMB), which is introduced in the next part. Due to the
relatively limited information from ¢, the embedding module of ¢
only consists of linear projection modules. After the embedding
step, the embedded diffusion step is concatenated with the input
embeddings. The concatenated embeddings are fed in to a SMM
module. Then the output of the SMM module is concatenated with
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Figure 2: Architecture of noise estimation module ¢g in SSD-TS.

the condition embeddings. After feeding the final embeddings to
another SMM module and final projection module, we can get the
noise predictions eg(Xy, t).

3.2 Intra-Channel Dependency Modeling

We start by analyzing what the denoising module needs to model
within a single channel. Since Triformer [9] first proposes the Patch-
ing technique and existing works [54] demonstrate the effectiveness
of patching in time series. We do not apply the patching technique
to the time series as our approach is non-autoregressive, which
means that we generate a complete sequence of size L for a total
of T steps (T < L). The noise described by the denoising module
corresponds to the variations between consecutive steps. This ne-
cessitates that the denoising module accurately models the internal
dependencies within the sequence in order to precisely predict the
noise in the intermediate steps.

As shown in Table.1, the main drawback of convolutional neural
network (CNN)-based backbones, such as U-Net [65], lies in their
inability to capture global information within the sequence. Addi-
tionally, stacking convolutional layers increases time complexity.
Transformer-based backbones, on the other hand, suffer from a
lack of dynamic weight allocation and exhibit quadratic complexity
with respect to sequence length L. Moreover, existing SSM-based
models rely on unidirectional intra-channel dependency modeling,
limiting their ability to capture global dependencies in time series
data.

To address these issues, we design an intra-channel dependency
modeling module based on a bidirectional linear state space model.
Specifically, given an input representation x, the BAM module first
normalizes the input x using layer normalization. The normalized
features are processed in both forward and backward directions.
The forward processing involves a linear convolutional layer fol-
lowed by a PNM module. The backward sequence shares a similar
processing procedure and the input sequence is flipped along the
time dimension. After processing in both directions, a temporal
attention module is applied to adjust the weights for each time step.
Finally, the results from both directions are element-wise summed

after aligning them by position, and a residual connection is added
to the original input x, producing the output of the BAM module.
The detailed structure of the BAM module is shown in Fig.3d.

And it is worth noticing the temporal attention module in Fig.3d
is not analogous to the attention mechanism used in Transformer.
Our temporal attention module takes a sequence as input and ap-
plies a convolutional layer followed by a sigmoid activation to
produce a set of weights for each position in the sequence. These
weights are then multiplied element-wise with the input sequence.
The purpose of this module is to adaptively reweight the temporal
positions within the sequence, thereby enhancing the modeling of
global dependencies and helping the state space model (SSM) better
capture long-range temporal relationships.

3.3 Inter-Channel Dependency Modeling

Addressing the time series modeling problem, capturing inter-
channel dependencies allows for the detection of mutual influences
among different channels (variables or features), helping to more
accurately reveal the global dynamics and complex interactions of
the system, thereby improving predictive performance and gener-
alization ability [62, 78].

For more accurate modeling of the channel dependencies, the
key is to identify the inductive biases inherent in the dependencies
between channels in time series data. Through an analysis of the
characteristics of time series data and previous methods [39, 72], we
argue that the modules designed for modeling channel relationships
should possess the capability to describe the following inductive
biases:

o Inter-Channel Dependencies: There are interdependencies
among channels and different channels exhibit distinct char-
acteristics.

o Global Dependencies: There exist long-term interdependen-
cies and co-evolution among the channels.

o Local Dependencies: Certain groups of channels exhibit stronger
internal dependencies compared to channels outside of these
groups.
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e Dynamic Dependencies: The dependencies among channels
are dynamic. Even for the same time series, the degree of
interaction between channels varies on specific downstream
tasks.

After identifying the four inductive biases mentioned above, we
choose the state space model as the framework for modeling inter-
channel dependencies for the following reasons:

e As shown in Eq.1, the state space model updates through
the iterative evolution of the hidden state, representing an
adaptive updating mechanism. In contrast to the explicit
modeling used in the attention structure, it is more accurate
when handling complex, long-term inter-channel interac-
tions. Furthermore, while attention relies on the static atten-
tion matrix, its ability to describe dynamic dependencies is
inferior to that of the state space models.

e Convolution channel modeling suffers from the following
limitations: On one hand, the description of local dependen-
cies is influenced by the convolution kernel, which assumes
that all dependencies are fixed in space (or time) and can-
not capture varying local dependencies. On the other hand,
the range of dependencies is constrained by the receptive
field, making it incapable of directly and effectively modeling
global dependencies.

The CMB module takes a latent representation x € RBXCXL a5 input.
First, the input representation x is transposed to xT e RBXIXC
for processing along the channel dimension, and the transposed
representation is passed through a convolution module and a PNM
module. In parallel, a combination of a convolutional layer followed
by a sigmoid activation is utilized to dynamically adjust the relative
relationships between the channels. After a residual connection
with the transposed input x7, the CMB module transposes the
output back to the original shape of x to produce the final output.
The details of CMB block are shown in Fig.3c.

3.4 Diffusion Models for Time Series
Imputation

When dealing with time series imputation using diffusion mod-
els, consider a time series X, our goal is to model the posterior
P(X|X, M, T). To make the modeled posterior more precisely, it is
natural to introduce conditions to introduce the diffusion process.
Considering the short range and long range inter-dependencies
within time series, maximizing the observed values utilized in the
diffusion process can effectively improve the performance of the
imputation results. On the other hand, due to the fact that all the
observed values are utilized as condition inputs in the diffusion
process, we do not apply any extra process to the observed values
to avoid the error accumulation caused by information propagation,
the observed values X¢ are condition inputs for the diffusion pro-
cess. Thus, the reverse process in Eq.3 is modified to a conditional
form with time-series inputs:

T
Po(X1X%0, X5) = pX) [ | X, 1 X5), (D)
t=1

where X'T“ ~ N(0,1), Xtm denotes the sequence of latent variables
in the diffusion process and t € {1,2,---, T} is the diffusion time
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Figure 3: Details of PNM, CMB and BAM block in the noise
prediction module. (a) PNM: backbone module based on
Mamba. (b) SMM: Sequential Mamba module composed of
stacks of BAM and CMB. (c) CMB: unidirectional module for
inter-channel dependency modeling. (d) BAM: bidirectional
module with temporal attention for intra-channel, multi-
range dependency modeling.
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steps. Eq.4 is reformulated as:
Po (X2 11X X5) = N (X[ 13 g (X[, t1X5), 00 (X", t1XS)T),  (8)

Then, the parameterized mean turns to:

1 ﬁt c
X t) = — (Xt — ——=€p (X1, 1 X)) |, 9
ﬂe(:)at tme(tlo) )
where
Xt = VoarXo + (1 - ar)e, (10)
{B: € (o, l)}tT:1 is a predefined variance scheduler, and a; =
15, (1= Be).

Finally, we get the conditional diffusion loss for the time series
imputation task:

L =Ex, clle—eg(Xs, tIX5) || = Ex; e lle—eg (VarXo+(1-ar)e, t1X5) |,
(11)
where € ~ N(0,I).

The network is trained based on Eq.11 to obtain the parame-
terized noise estimation function €g. And the missing values are
estimated by iterative sampling using €g. The training and sampling
algorithm is detailed in Alg.1 and Alg.2.

Compared with the attention-based backbones, the advantage
of our proposed backbone lies in the following:

(1) Our proposed is more capable of distinguishing noise and
signal. The data is not always made up of signals over the
diffusion process. Self-attention mechanism generates atten-

QI; "y,

which means in the early stage of the diffusion process

(data is made up of noise totally) and the intermediate stage

of diffusion process (data is made up of noise and signal),

the attention weights may be misleading. To avoid this is-
sue, we proposed to use linear state space models (which
updates h; = Arh;—1 + Bx; and outputs y; = CtTht or

tion weights according to input data, i.e.,y = softmax
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Algorithm 1 Training Procedure of SSD-TS

1: Input: Observed sequence xo, number of iterations N, variance
scheduler ;

: Output: Denoising function g

: Fori=1to N do:

t ~ Uniform({1,2,---,T})

e~ N(0,I)

Calculate diffusion targets x; according to Eq.10

Take gradient step on

Vo (lle — eg(xr, t1Xo) 1)

according to Eq.11
8: End For

NS vy

Algorithm 2 Sampling Procedure of SSD-TS

1: Input: Trained denoising function €y, sampling step T
2: Output: Mean prediction xp

3: Fort=T,T-1,---,1do:

4 z~N(I)ift > 1lelsez=0

. -1 _ Ll
5. Xp_1 = v (xt m) €g(xs,t) + 0pz
6: End For

y = Zizo K;_xp equivalently) as the backbone diffusion
modules, which update parameters independent of content
similarity and the gating mechanism of linear SSMs can also
help filter noise.

(2) Our proposed backbone has a controllable frequency re-
sponse. From a frequency-domain perspective, SSMs offer
controllable frequency responses K(w) = C(iwl — A)~!B,
allowing them to suppress broadband noise while preserving
signal components concentrated in specific frequency bands.
This frequency selectivity enables more robust and adap-
tive representation learning, whereas attention mechanisms,
lacking frequency bias, may fail under similar conditions.

3.5 Complexity Analysis

In this part, we will give a brief analysis about the time and space
complexity in the SSM module and self-attention module!. While
dealing with the input sequences, the core component of our module
is the PNM module in Fig.3 and the self-attention module in the
Transformer architecture, respectively. The time complexity of self-
attention module is O(CL?) and the space complexity is O(L?+CL),
where L is the length of the input sequence and C is the channel of
the input sequence.

In our method, the forward process described in Eq.2 is imple-
mented by converting the process to multiplications of structured
matrices, which is of time complexity O(NCL) and of space com-
plexity O(CL+ N(C + L)) (N is a constant number and set as 16 by
default). This indicates that our model is of linear time and space
complexity with respect to the sequence length L, which ensures
scalability and reduces memory cost for longer sequences.

'We do not take the time and space complexity of MLPs before the self-attention
module or SSM module into consideration.
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4 Experiments

4.1 Experimental Settings and Evaluation
Metrics

All experiments are conducted using PyTorch [58] in Python 3.9
and executed on an NVIDIA RTX3090 GPU. The training process
is guided by Eq.11, employing the ADAM optimizer [31] with a
learning rate of 2 x 10, The hyperparameters in our experiments
can be found in Appendix.7.1.2.

For time series modeling tasks, we explicitly categorize the prob-
lem into two paradigms based on the model’s capacity to quantify
uncertainty, i.e., probabilistic time series modeling and deterministic
time series modeling. To evaluate the performance of determinis-
tic modeling methods, we report the Mean Absolute Error (MAE),
the Mean Squared Error (MSE), Mean Relative Error (MRE) and
Root Mean Squared Error (RMSE) between outputs of the model
and ground-truth time series data. As defined in Definition.2.1, the
original time series is denoted as y € RKXL, the output time series
is denoted as § € REXL M is the indicator matrix, the metrics are
formulated as follows:

Mean Absolute Error (MAE): MAE calculates the average L;
distance between ground truth and the output values alongside the
channel dimension, which is formulated as:

K L
MAE(.9) =2 > Y =D o -l (12

i=1 j=1

Mean Square Error (MSE): MSE calculates the average Ly be-
tween ground truth and the output values alongside the channel
dimension, which is formulated as:

K L
MSE(y.9) =3 > D (y-§o(1-M)E (19

i=1 j=1

Root Mean Square Error (RMSE): RMSE is the square root of the
average Ly between ground truth and the output values alongside
the channel dimension:

—_

K L
e y=pea-m3, 9

=1 j=1

RMSE(y, 9) =

Mean Relative Error (MRE): MRE estimates the relative difference
between y and §:

Shy Iy = 9lij
MRE(y,§) = > > (1-M);;0 ———L  (15)

i=1 j=1 Yij

==

For probabilistic time series modeling evaluation, we additionally
evaluate the Continuous Ranked Probability Score (CRPS). CRPS
measures the integral squared difference between the predicted and
empirical cumulative distribution functions (CDFs), providing a
pointwise evaluation of probabilistic calibration. By applying CRPS,
we can effectively evaluate the consistency between the estimated
distribution and the real distribution. The CRPS metric is defined
as follows:

Continuous Ranked Probabilistic Score (CRPS): Given an esti-
mated probability distribution function F modeled with an obser-
vation x, CRPS evaluates the compatibility and is defined as the
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integral of the quantile loss for all quantile levels:
1
CRPS(F!,x) = / Ag(F (e, %)) da, (16)
0

where Aq(q.y) = (@ — 1y<q)(y — @), @ € [0,1] and 1y<4 the indi-
cator function, ie., if y < g, the value of the indicator function is 1,
else 0.

Following [72, 83], we separate the interval [0, 1] to 20 quantile
levels with a stepsize of s = 0.05, and the estimated value of CRPS
is:

19 . —1(;.
CRPS(F™\,x) ~ )’ w 17)
i=1

For the whole time series X € RK*L the CRPS value is normalized
for all time steps and channels:

T, Xk, CRPS(F 1L X j)
P Z]L-zl X5

CRPS(F~ 1, X) = (18)

4.2 Time Series Imputation

4.2.1 Datasets. To evaluate the performance of our model on time
series imputation tasks, we employ three benchmark datasets, in-
cluding the MuJoCo dataset [66], the Air Quality dataset (AQI) [84]
and Physionet Challenge 2012 dataset [70]. Please refer to Appen-
dix.7.1.1 for more details about the datasets.

It is worth noting that we select these three datasets to include as
many potential missing data scenarios as possible. For the Physionet
dataset, consistent with previous studies [3, 60, 61, 71], we process
the dataset into hourly time series, each containing 48 time steps,
with approximately 80% of the data missing. Since the dataset does
not include ground truth, we randomly select 10%, 50%, and 90% of
the data as ground truth in the test set. For the Air Quality dataset,
around 13% of the data is missing in a non-random manner. As this
dataset contains structured artificial ground truth, we do not test
different missing ratios on the AQI dataset. The MuJoCo dataset,
on the other hand, is a complete dataset and we apply hand-crafted
masks to simulate masking patterns that are not present in the
Physionet and Air Quality datasets.

4.2.2  Baselines. Correspondingly, in our experiments, the base-
lines include both deterministic and probabilistic imputation mod-
els. The deterministic models involve: BRITS [3], RDIS [7], SS-
GAN [47], TIDER [39], and SAITS [15]. The probabilistic imputa-
tion models encompass various distribution estimation methods,
such as: methods based on variational autoencoders (V-RIN [50]),
methods based on diffusion models (CSDI [72], SSSD [1], D3M[83],
TS-Diff [39]), methods based on Schrédinger Bridge (CSBI [6]), and
methods based on Gaussian process (GP-VAE [17]). And on the
MuJoCo dataset, we compare our models against RNN GRU-D [4],
ODE-RNN [66], NeuralCDE [49], Latent-ODE [66], NAOMI [43],
CSDI [72] and SSSD [1] to be consistent with SSSD [1].

4.2.3 Experimental Results and Analysis. Table 2 presents the exper-
imental results on the MuJoCo dataset for the random missing (RM)
case, with different missing rate scenarios. Under the two higher
missing rates (80% and 90%), our method achieves the best per-
formance, with improvements of 48.2% (at 80% missing rate) and
65.8% (at 90% missing rate) compared to the second-best results.
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Table 2: MSE Results on MuJoCo Dataset with missing ratio
70%, 80% and 90% for the missing scenario RM.

Model 70% RM 80% RM 90% RM
RNN GRU-D 1.134e-2 1.421e-2 1.968e-2
ODE-RNN 9.86e-3 1.209e-2 1.647e-2
Neural CDE 8.35e-3 1.071e-2 1.352e-2
Latent-ODE 3.00e-3 2.95e-3 3.60e-3
NAOMI 1.46e-3 2.32e-3 4.42e-3
NRTSI 6.3e-4 1.22e-3 4.06e-3
CSDI 2.4e-4+3e-5 6.1e-4+1.0e-4 4.84e-3+2e-5
SSSD 5.9e-4+8e-5 le-3+5e-5 1.90e-3+3e-5
SSD-TS(Ours) | 2.7e-4xle-5 3.16e-4+9.77e-6 6.5e-4+1le-4

Table 3: RMSE results on Physionet and Air quality dataset.
The mean and standard error are obtained by 3 runs and
the best result are in bold while the second best results are
underlined.

Physionet AQI
10% missing | 50% missing | 90% missing

V-RIN 0.628+0.025 0.693+0.022 0.928+0.013 | 40.11+1.14
BRITS 0.619+0.018 0.701+0.021 0.847+0.021 24.28+0.65

SSGAN 0.607+0.034 | 0.758 +£0.025 | 0.830+0.009 -
RDIS 0.635+0.018 | 0.747 £0.013 | 0.922+0.018 | 37.25+0.31
CSDI 0.531£0.009 0.668+0.007 0.834+0.006 19.21+0.13
CSBI 0.547+0.019 | 0.649 +£0.009 | 0.837+0.012 19.07+0.18
SSSD 0.459+0.001 0.632+0.004 0.824+0.003 18.77+0.08
TS-Diff 0.523+0.015 0.679+0.009 0.845+0.007 19.06+0.14
SAITS 0.461+0.009 0.636+0.005 0.819+0.002 18.68+0.13
D*M(Constant-Sqrt) | 0.438:£0.003 0.615+0.012 0.814+0.002 | 18.19+0.18
TIDER 0.486+0.006 0.659+0.009 0.833+0.005 18.94+0.21
SSD-TS(Ours) 0.339+0.0002 | 0.509+0.007 | 0.623+0.0001 | 18.66+0.26

At 70% missing rate, our method ranks second, with only an 11.1%
difference from the best-performing CSDI. This demonstrates the
strong modeling capability of our method on datasets with high
missing rates under random missing scenario.

Table.3 presents the RMSE performance of our method on two
real-world datasets with missing data. We observe that on the
Physionet dataset, our method achieves the best results across three
different missing rates (10%, 50%, and 90%), with improvements
of 22.6% (at 10% missing rate), 17.2% (at 50% missing rate), and
23.5% (at 90% missing rate). Additionally, on the AQI dataset, our
method ranks second. These results demonstrate that our method
outperforms other approaches in modeling time series data on
real-world datasets with missing values.

Table.4 presents the CRPS performance of our method on two
real-world datasets with missing data. Compared to other proba-
bilistic time series methods, our approach achieves the lowest CRPS
scores in three out of the four tasks (10% and 50% on PhysioNet, and
AQI). This indicates that, relative to other probabilistic time series
modeling methods, our approach demonstrates the most accurate
modeling capability of the distribution of unknown points within
the sequence.

In addition, we also compare the performance of diffusion mod-
els with different backbones. Existing imputation methods mainly
cover two-kinds of backbones: transformer-based [75] backbones
and state-space model-based [22] backbones. The core architecture
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Table 4: CRPS results on Physionet and Air quality dataset.
The mean and standard error are obtained by 3 runs and
the best result are in bold while the second best results are

Hongfan Gao et al.

MujoCo, Channel 5 MujoCo, Channel 7

underlined.

Physionet AQI
10% missing 50% missing | 90% missing

GP-VAE 0.582+0.003 0.796+0.004 0.998+0.001 0.402+0.009
V-RIN 0.814+0.004 0.845+0.002 0.932+0.001 0.534+0.013

CSDI 0.242+0.001 0.336+0.002 0.528+0.003 0.108+0.001

CSBI 0.247+0.003 0.332 +£0.003 0.527+0.006 0.110+0.002

SSSD 0.233+0.001 0.331+0.002 0.522+0.002 0.107+0.001
TS-Diff 0.249+0.002 0.348+0.004 0.541£0.006 0.118+0.003
DBM(Constant-Sqrt) 0.223+0.001 0.327+0.003 | 0.520+0.001 | 0.106+0.002

SSD-TS(Ours) 0.164+0.0004 | 0.244:+0.0001 | 0.533+0.0004 | 0.096+0.0002

of CSDI is a spatial-temporal transformer, which first embeds the
input tokens and captures the inter- and intra- channel dependency
with two transformer encoders. D3M adopts a similar attention
mechanism as the backbone, with the addition of gating mecha-
nisms and an exponential moving average (EMA) module. SSSD
modifies the backbone of CSDI by replacing the spatial-temporal
transformer with the S4 structure proposed in [22], which is also
utilized in TS-Diff.

As stated in Sec.3, our method employs a modern state space
model, Mamba [12] as the backbone. Similar to other methods, we
also adopt special designs to capture inter- and intra- channel de-
pendencies. The results in Table.3 and 4 show that our method
outperforms those with transformer and S4-based core architec-
tures. This demonstrates: 1) the effectiveness of Mamba structure as
the backbone for diffusion models and 2) the validity of the designs
we adopted in addressing the problem of time series imputation.

4.3 Visualization Results

Fig.4 shows the visualization results on the MuJoCo dataset, AQI
dataset and Physionet dataset. We can see that almost all ground
truth values for the points to be imputed fall within the 95% confi-
dence interval, and most of the ground truth values are within the
50% confidence interval, which demonstrates the effectiveness of
our method.

4.4 Ablation Studies

Effectiveness of Proposed Modules. To validate the effectiveness
of the proposed module, we conduct ablation experiments on the
following aspects: 1) the bidirectional modeling, 2) the temporal
attention mechanism, 3) the inter-channel multivariate dependen-
cies. We also replace the CMB block with channel attention module
implemented using [27] to validate the effectiveness of CMB block.
All experiments are conducted on the MuJoCo dataset with the
missing ratio 90%.

The results are shown in Table.5. It can be observed that the
module equipped with BAM and CMB block performs the best,
significantly outperforming the results of removing any one of these
components across all four metrics. The temporal attention module
has the largest impact on the model, and its removal leads to a
significant performance drop. Similarly, removing the CMB module
also results in a notable degradation in performance, meanwhile,
modifying the CMB block to Channel Attention in [27] also leads to
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Figure 4: Visualization results of probabilistic time series
imputation results on MuJoCo, AQI and Physionet dataset.
The orange solid line represents the mean of the imputation
results, while the dark green represents the 50% confidence
interval, and the light green solid line represents the 95%
confidence interval. In Figure a, the blue solid line represents
the target of imputation (i.e., the ground truth). In Figures b
and c, the blue dots represent the ground truth of the missing
points, and the red crosses represent the observed values.

a performance drop, which proves that state space models are also
effective for modeling inter-channel dependencies. On the other
hand, adjusting the BAM module to its unidirectional form also
causes some degree of performance decrease, which means the
bidirectional modeling manner is capable of modeling more intra-
channel dependency. This fully demonstrates the effectiveness of all
our proposed blocks and the capability of linear state space models
as backbones for time series diffusion models.

Time Efficiency of Mamba Backbones. We compare the in-
ference time of our model with a variant using the transformer
backbone. The results is shown in Table.6. We can see that our
model achieves faster sampling, less memory cost comparing with
the model with transformer backbones, which demonstrates the
efficiency of our model and our proposed backbone.

4.5 Parameter Sensitivity Analysis

We conduct parameter sensitivity experiment and the results are
shown in Table.7. There are three hyperparameters with different
dimensions: sequence, residual connection, and input projection
dimension, which are set to be equal in our experiments. We test
different results for C = 32, 64, 128. The experimental results show
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Table 5: Experimental Results of Ablation Study

MSE

MAE

MRE

RMSE

Time Modeling | Temporal Attention | Inter-Channel Dependency

Bidirectional Yes Yes
Forward Yes Yes
Forward Yes No
Backward Yes Yes
Backward Yes No
Bidirectional Yes No
Bidirectional No Yes

Bidirectional Yes Channel Attention

5.46e-4+1.6e-5

7.19e-4+2.0e-5

7.48e-4+9.5e-5
7.24e-4+7.3e-5
8.39e-4+6.1e-5
8.85e-4+2.8e-5
9.66e-4+9.5e-5
7.43e-4+4.0e-5

1.17e-2+7.4e-5
1.26e-2+2.1e-4
1.23e-2+3.5e-4

1.21+7.5e-3%
1.29+2.2e-2%
1.23+3.5e-2%

1.30e-2+4.2e-4
1.46e-2+3.8e-4
1.40e-2+3.1e-4
1.53e-2+3.3e-4
1.31e-2+5.5e-5

1.30+4.2e-2%
1.46+3.8e-2%
1.44+3.4e-2%
1.57+3.5e-2%
1.35+5.6e-3%

2.33e-2+3.1e-4
2.67e-2+2.9e-4
2.71e-2+1.5e-3
2.69e-2+1.3e-3
2.89e-2+1.0e-3
2.97e-2+4.8e-4
3.09e-2+1.3e-3
2.71e-2+5.6e-5

Table 6: Inference time comparison with transformer back-
bones

Model Transformer-backbone | SSD-TS(128)
#Parameters(M) 9.208 87.57
Inference time/sample(s) 1.5126 0.93
GPU Memory(MB) 11250 4536

that as C increases, all metrics significantly decrease. Addition-
ally, since C = 256 exceeds one single GPU memory capacity, we
choose C = 128 in our experiments to balance between metrics and
computational cost.

Table 7: Parameter Sensitivity Results

#Channel | MAE MSE RMSE
32 0.0482 | 0.0066 | 0.0809
64 0.0147 | 0.00075 | 0.0273
128 0.0135 | 0.00065 | 0.0254

5 Related Work

5.1 Time Series Imputation

The objective of time series imputation is to recover the missing data
points leveraging the observed values and intrinsic dependencies
within the series. Statistical time series methods, such as autore-
gressive (AR) models [18, 45] and autoregressive integrated moving
average (ARIMA) models [51, 52], are capable of imputing missing
values; however, they often lack the flexibility required to accurately
model the complex characteristics of time series data, such as trends
and seasonality. Deep learning methods have also found extensive
application in imputation tasks. From the perspective of network
architectures, various structures including TCN [35], LSTM [25],
Multi-Layer Perceptron (MLP), and Transformer [75] have been
applied to time series imputation, such as [5, 15, 57, 86, 87, 89].
State space models have also been applied to time series imputa-
tion tasks, such as [14, 26]. Recently, methods based on generative
methods [1, 72, 83] have also achieved great success in probabilistic
time series imputation.

5.2 Generative Models

Generative models are probabilistic models that learn the original
data distribution and generate new samples by sampling from the

learned distribution. The goal is to learn the joint probability distri-
bution p(x) of the training data or the posterior distribution p(x|y)
and generate new samples that resemble the original data. Tradi-
tional generative models include Hidden Markov Models [28, 36],
Bayesian models [16, 34] and Gaussian process [10, 91]. Researchers
have also proposed many deep learning-based generative mod-
els, such as Variational Autoencoders [32], Generative Adversarial
Networks (GANs) [19], Normalizing Flow-based Models [33], and
Denoising Diffusion Probabilistic Models [24].

Since the goal of generative models is to model the distribution
of unknown points and generate target points by sampling from
the learned distribution, they naturally possess the ability to esti-
mate the uncertainty of unknown points. This makes generative
models particularly well-suited for probabilistic time series model-
ing. Therefore, many methods have been proposed which adopts
generative models for probabilistic time series modeling, includ-
ing VAE-based methods [13, 37, 77], GAN-based methods [41, 85],
Normalizing-flow based methods [11, 64] and diffusion-based meth-
ods [63, 69]. State-space models have proved their effectiveness as
diffusion backbones [1, 83].

6 Conclusion

In this paper, we propose SSD-TS, which explores the potential of
linear state-space model (Mamba) as the backbone structure for
diffusion models. Based on the requirements of time series mod-
eling task and the characteristics of time series data, we propose
a denoising module for diffusion models with Mamba backbone.
The proposed module enables bidirectional structural modeling of
sequences and effectively leverages both inter-channel and intra-
channel dependencies. Experimental results show that, compared to
models with structured state-space models, transformers, and con-
volutional backbones, our method achieves superior performance
in time series imputation task. This demonstrates the capability of
the linear state-space Mamba model as a backbone for diffusion
models. Moreover, our method achieves favorable results in terms of
different deterministic and probabilistic metrics, further validating
the effectiveness of our design for time series imputation task.
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7 Appendix
7.1 Experiment Details

7.1.1  Dataset Descriptions. In this part, we give a brief introduction
about the datasets in our experiments.

Air quality: The air quality dataset contains PM2.5 data from
36 monitor stations in Beijing, which is sampled hourly for 12
months. There are 13.3% of missing values with a non-random
missing pattern. The air quality dataset contains artificial ground
truth with structured missing pattern.

Healthcare (Physionet): The healthcare dataset contains 4000
irregularly-sampled clinical time series made up of 35 variables
(such as Albumin and heart-rate) for 48 hours collected from ICU. To
be consistent with previous studies, the dataset is processed hourly
to get 48 timesteps and the processed dataset contains near 80%
missing values without ground truth. For evaluation, we randomly
choose 10/50/90% of the observed values as the ground truth of test
dataset.

MuJoCo: The MuJoCo dataset [66] collects a total of 10,000
simulations of the "Hopper" model from the DeepMind Control
Suite and MuJoCo simulator. The position of the body in 2D space is
uniformly sampled from the interval [0, 0.5]. The relative position of
the limbs is sampled from the range [—2, 2], and initial velocities are
sampled from the interval [-5, 5]. In all, there are 10000 sequences
of 100 regularly sampled time points with a feature dimension of
14 and a random split of 80/20 is done for training and testing. We
follow the same preprocessing as in [68] for fair comparison.

7.1.2  Hyperparameters. Table 8 lists the hyperparameters in SSD-
TS.

Table 8: Hyperparameters in SSD-TS

SSD-TS
Sequence dim (C in Fig.2) 128
Residual channels (K in Fig.2) 128
Num channels (dim of input projections before €g) 128
Diffusion embedding dim 128
Training iteration 150k
Num of conditional SMM blocks 1
Num of input SMM blocks 1
Num of sequential SMM blocks 1

7.1.3  Time Series Forecasting Results. Our model is applicable to
time series forecasting tasks and we test it on the ETTm1 [93]
dataset with forecasting length = 24 and 96, the results are in Table.9.
Our model ranks 1st in 3 of 4 metrics and 2nd on MSE of forecasting
length 24, while also performs best among imputation models.

7.1.4  Block Missing Results. To evaluate the performance of our
models on block missing scenario, we trained our models on the
PTB-XL dataset (in [1]) and the result of 20% block missing is
presented in Table.10.

7.1.5 Additional Time Series Imputation Results. We also compare
our SSD-TS with FIM [67](on Physionet), ImputeFormer [53](on
AQI) and Bayotide [16](on Solar dataset). As the source code of these
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Table 9: Time series forecasting results on ETTm1 dataset

Forecasting Length 24 96
Model MAE MSE | MAE MSE
LSTNet 1.170  1.968 | 1.542 2.762
LSTMa 0.629 0.621 | 0913 1.339
Reformer 0.607 0.724 | 0.945 1.433
LogTrans 0.412 0419 | 0.792 0.768
Informer 0.369 0.323 | 0.614 0.678
CSDI 0.370 0.354 | 0.756  1.468
Autoformer 0.403  0.383 | 0.463 0.481
SSSD 0.361 0.351 | 0.547 0.538

SSD-TS(Ours) 0.282 0.331

0.391 0.421

Table 10: Block missing results on PTB-XL dataset.

Model MAE RMSE
LAMC 0.0840 0.1171
CSDI 0.1054 0.2254
DiffWave | 0.0451 0.1378
SSSD 0.0324 0.0832
SSD-TS 0.022  0.059

baselines are not provided, all the results are collected from their
corresponding papers. For FIM model, we report its best results.

Table 11: Comparison with FIM on physionet dataset

Models | BRITS SAITS CSDI FIM-l(o.n.=4) SSD-TS
MAE 0.297  0.257  0.252 0.402 0.217

Table 12: Comparison with Imputeformer on AQI dataset

Models ‘ BRITS SAITS TIDER GRIN SPIN ImputeFormer CSDI SSD-TS
MAE ‘ 14.74 19.79 32.85 12.08 11.89 11.58 9.60 6.75

Table 13: Comparison with Bayotide on Solar dataset (50%
missing rate)

Models | BRITS NAOMI SAITS TIDER CSDI CSBI BayoTIDE SSD-TS
RMSE 2.842 2.918 2.791 1.679 2276 2.097 1.699 0.868
MAE 1.985 2.112 1.827 0.838  0.804 1.033 0.734 0.617

Table 14: Comparison with Bayotide on Solar dataset (30%
missing rate)

Models | BRITS NAOMI SAITS TIDER CSDI CSBI BayoTIDE SSD-TS
RMSE 2.617 2.702 2.359 1.676 2132  1.987 1.621 0.987
MAE 1.861 2.003 1.575 0.874  1.045 0.926 0.709 0.648
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